首页 | 本学科首页   官方微博 | 高级检索  
     

基于CatBoost算法的P2P违约预测模型应用研究
引用本文:马晓君,宋嫣琦,常百舒,袁铭忆,苏衡. 基于CatBoost算法的P2P违约预测模型应用研究[J]. 统计与信息论坛, 2020, 0(7): 9-17
作者姓名:马晓君  宋嫣琦  常百舒  袁铭忆  苏衡
作者单位:东北财经大学统计学院;东北财经大学教务处
基金项目:国家自然科学基金项目“带有辅助信息的混合模型的统计推断和应用”(11701071);教育部人文社会科学研究项目“减排目标限定下中国碳排放权的省区分配:初值确定及动态调整研究”(18YJC910013);辽宁省社科规划项目“辽宁省互联网金融发展测度及其地区影响效应统计评估”(L18CTJ003)。
摘    要:在互联网金融背景下,智能算法的应用能够为经济领域提供新的思路和方向,有效推动中国互联网金融向“互联网+金融+智能”模式的转变。P2P网络借贷是通过P2P公司搭建的第三方互联网平台进行“个人对个人”的直接信贷。以人人贷平台为研究对象,运用特征工程技术,将CatBoost算法应用于构建P2P违约预测模型,并对违约影响因素进行综合分析。结果表明,CatBoost算法的预测准确率达96%,对实际结果的拟合效果较好,并能够对模型出错所导致的损失成本进行有效控制。此外,综合分析违约影响因素发现,借款人的信用情况对借款人违约行为影响较大,其中还清贷款次数、逾期次数与成功借款次数应作为借款人信用评估的重要参考指标。结合本文的研究成果与中国P2P行业发展状况,本文建议P2P平台积极促进数据分析与测算分析技术的革新与应用,政府及相关部门形成政策法规的同步发展,促成从平台内部到外部环境的合力发展态势。

关 键 词:P2P  违约预测模型  CatBoost算法  特征工程  影响因素

Application Research of P2P Default Prediction Model Based on CatBoost Algorithm
MA Xiao-jun,SONG Yan-qi,CHANG Bai-shu,YUAN Ming-yi,SU Heng. Application Research of P2P Default Prediction Model Based on CatBoost Algorithm[J]. Statistics & Information Tribune, 2020, 0(7): 9-17
Authors:MA Xiao-jun  SONG Yan-qi  CHANG Bai-shu  YUAN Ming-yi  SU Heng
Affiliation:(School of Statistics,Dongbei University of Finance&Economics,Dalian 116025,China;Academic Affairs Office,Dongbei University of Finance&Economics,Dalian 116025,China)
Abstract:In the context of Internet finance,the application of intelligent algorithms provide new ideas and directions for the economic field,effectively promoting the transformation of China's Internet finance to theInternet+Finance+Intelligencemodel.P2P online lending is aperson-to-persondirect credit through a third-party Internet platform built by P2P companies;Among them,Renrendai is a more representative and influential P2P online lending platform in China,which continues to operate steadily and has comprehensive user information collection.Take Renrendai platform as the research object,use feature engineering technology,innovatively applie CatBoost algorithm to construct P2P default prediction model,and comprehensively analyse the factors affecting the default.The results show that the prediction accuracy of CatBoost algorithm is up to 96%,which fits the actual results better,and can effectively control the cost of losses caused by model errors.According to the comprehensive analysis of the factors that affect default,the borrower's credit status has the strongest impact on the borrower's default behaviour,while the number of loan repayments,overdue and successful borrowing should be used as important reference indicators for the borrower's credit assessment.Combining the research results with the development of China's P2P industry,it suggests that the P2P platform should actively promotes the innovation and application of data analysis and measurement analysis technologies,the government and relevant departments form the synchronous development of policies and regulations,resulting in a joint development trend from the platform to the external environment.
Keywords:P2P  default prediction model  CatBoost algorithm  feature engineering  influencing factor
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号