首页 | 本学科首页   官方微博 | 高级检索  
     

基于盾构掘进参数的LVQ神经网络地层识别
引用本文:邵成猛. 基于盾构掘进参数的LVQ神经网络地层识别[J]. 石家庄铁道学院学报(社会科学版), 2016, 0(1): 93-96,102
作者姓名:邵成猛
作者单位:中国铁建十六局集团有限公司
摘    要:以苏州4号线2标及2号线东延伸线5标地铁工程为背景,分析了盾构机的掘进参数:千斤顶推力、推进速度、刀盘扭矩、螺旋机转速和同步注浆量在不同地层条件下的变化规律。提出了基于盾构机掘进参数的学习向量量化(Learning Vector Quantization,LVQ)神经网络地层识别方法。建立了以盾构机五个掘进参数作为输入,地层特性编码为输出的数学模型,通过每种地层100组训练样本对模型进行训练,通过57步训练,训练样本误差控制在0.1以内,并用每种地层50组检验样本进行检验,地层总体识别率达到82.7%。

关 键 词:盾构机  掘进参数  地层识别  LVQ神经网络
收稿时间:2015-05-10

Identification of Strata with LVQ Neural Network Based on Shield Tunneling Parameters
Shao Chengmeng. Identification of Strata with LVQ Neural Network Based on Shield Tunneling Parameters[J]. , 2016, 0(1): 93-96,102
Authors:Shao Chengmeng
Affiliation:China Railway 16th Bureau Group Co., Ltd
Abstract:Considering the subway projects of NO.2 line and NO. 4 line in Suzhou, the changing rule of tunneling parameters under different stratum conditions is analyzed. The tunneling parameters include cylinder thrust force, advancing velocity, cutterhead torque, rotating speed of screw conveyor and synchronous grouting quantity. A stratum recognition method based on tunneling parameters of TBM and LVQ neural network is proposed, and a mathematical model with the input of five tunneling parameters and output of stratum coding is built. Each stratum has 100 training samples, and the model error of training samples is limited below 0.1 through 57 step training. Fifty samples are selected for each stratum to test this model, and the overall recognition rate reaches 82.7%.
Keywords:shield machine   tunneling parameter   stratum recognition   LVQ neural network
点击此处可从《石家庄铁道学院学报(社会科学版)》浏览原始摘要信息
点击此处可从《石家庄铁道学院学报(社会科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号