首页 | 本学科首页   官方微博 | 高级检索  
     


A Nordhaus-Gaddum-type result for the induced path number
Authors:Johannes H. Hattingh  Osama A. Saleh  Lucas C. van?der Merwe  Terry J. Walters
Affiliation:1. Department of Mathematics, East Carolina University, Greenville, NC, 27858, USA
2. Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA
Abstract:
The induced path number ??(G) of a graph G is defined as the minimum number of subsets into which the vertex set of G can be partitioned so that each subset induces a graph. A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum (or product) of a parameter of a graph and its complement. If G is a subgraph of H, then the graph H?E(G) is the complement of G relative to H. In this paper, we consider Nordhaus-Gaddum-type results for the parameter ?? when the relative complement is taken with respect to the complete bipartite graph K n,n .
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号