Abstract: | The authors study the empirical likelihood method for linear regression models. They show that when missing responses are imputed using least squares predictors, the empirical log‐likelihood ratio is asymptotically a weighted sum of chi‐square variables with unknown weights. They obtain an adjusted empirical log‐likelihood ratio which is asymptotically standard chi‐square and hence can be used to construct confidence regions. They also obtain a bootstrap empirical log‐likelihood ratio and use its distribution to approximate that of the empirical log‐likelihood ratio. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals, and perform better than a normal approximation based method. |