Abstract: | The authors propose and explore new regression designs. Within a particular parametric class, these designs are minimax robust against bias caused by model misspecification while attaining reasonable levels of efficiency as well. The introduction of this restricted class of designs is motivated by a desire to avoid the mathematical and numerical intractability found in the unrestricted minimax theory. Robustness is provided against a family of model departures sufficiently broad that the minimax design measures are necessarily absolutely continuous. Examples of implementation involve approximate polynomial and second order multiple regression. |