Affiliation: | 1. Mathematics Department, Faculty of Science, Taibah University, Al Madinah, Kingdom of Saudi Arabia;2. School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia |
Abstract: | Measures of the spread of data for random sums arise frequently in many problems and have a wide range of applications in real life, such as in the insurance field (e.g., the total claim size in a portfolio). The exact distribution of random sums is extremely difficult to determine, and normal approximation usually performs very badly for this complex distributions. A better method of approximating a random-sum distribution involves the use of saddlepoint approximations. Saddlepoint approximations are powerful tools for providing accurate expressions for distribution functions that are not known in closed form. This method not only yields an accurate approximation near the center of the distribution but also controls the relative error in the far tail of the distribution. In this article, we discuss approximations to the unknown complex random-sum Poisson–Erlang random variable, which has a continuous distribution, and the random-sum Poisson-negative binomial random variable, which has a discrete distribution. We show that the saddlepoint approximation method is not only quick, dependable, stable, and accurate enough for general statistical inference but is also applicable without deep knowledge of probability theory. Numerical examples of application of the saddlepoint approximation method to continuous and discrete random-sum Poisson distributions are presented. |