首页 | 本学科首页   官方微博 | 高级检索  
     


Ascent-based Monte Carlo expectation– maximization
Authors:Brian S. Caffo  Wolfgang Jank   Galin L. Jones
Affiliation:Johns Hopkins University, Baltimore, USA; University of Maryland, College Park, USA; University of Minnesota, Minneapolis, USA
Abstract:Summary.  The expectation–maximization (EM) algorithm is a popular tool for maximizing likelihood functions in the presence of missing data. Unfortunately, EM often requires the evaluation of analytically intractable and high dimensional integrals. The Monte Carlo EM (MCEM) algorithm is the natural extension of EM that employs Monte Carlo methods to estimate the relevant integrals. Typically, a very large Monte Carlo sample size is required to estimate these integrals within an acceptable tolerance when the algorithm is near convergence. Even if this sample size were known at the onset of implementation of MCEM, its use throughout all iterations is wasteful, especially when accurate starting values are not available. We propose a data-driven strategy for controlling Monte Carlo resources in MCEM. The algorithm proposed improves on similar existing methods by recovering EM's ascent (i.e. likelihood increasing) property with high probability, being more robust to the effect of user-defined inputs and handling classical Monte Carlo and Markov chain Monte Carlo methods within a common framework. Because of the first of these properties we refer to the algorithm as 'ascent-based MCEM'. We apply ascent-based MCEM to a variety of examples, including one where it is used to accelerate the convergence of deterministic EM dramatically.
Keywords:EM algorithm    Empirical Bayes estimates    Generalized linear mixed models    Importance sampling    Markov chain    Monte Carlo methods
相似文献(共20条):
[1]、Olivier Cappé, Eric Moulines.On-line expectation–maximization algorithm for latent data models[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,2009,71(3):593-613.
[2]、Babak Shahbaba,Shiwei Lan,Wesley O. Johnson,Radford M. Neal.Split Hamiltonian Monte Carlo[J].Statistics and Computing,2014,24(3):339-349.
[3]、Richard G. Everitt,Richard Culliford,Felipe Medina-Aguayo,Daniel J. Wilson.Sequential Monte Carlo with transformations[J].Statistics and Computing,2020,30(3):663-676.
[4]、L. Mark Berliner.Monte Carlo Based Ensemble Forecasting[J].Statistics and Computing,2001,11(3):269-275.
[5]、Clément Walter.Point process-based Monte Carlo estimation[J].Statistics and Computing,2017,27(1):219-236.
[6]、Monte Carlo integration with Markov chain[J].Journal of statistical planning and inference
[7]、Marcelo Pereyra.Proximal Markov chain Monte Carlo algorithms[J].Statistics and Computing,2016,26(4):745-760.
[8]、Ye,Lifeng,Beskos,Alexandros,De Iorio,Maria,Hao,Jie.Monte Carlo co-ordinate ascent variational inference[J].Statistics and Computing,2020,30(4):887-905.
[9]、Ilya Gertsbakh,Eyal Neuman.Monte Carlo for Estimating Exponential Convolution[J].统计学通讯:模拟与计算,2015,44(10):2696-2704.
[10]、Monte Carlo Simulation of Numerical Integration[J].Journal of Statistical Computation and Simulation
[11]、James G. Booth,Somnath Sarkar.Monte Carlo Approximation of Bootstrap Variances[J].The American statistician,2013,67(4):354-357.
[12]、Walter R. Gilks,& Carlo Berzuini.Following a moving target—Monte Carlo inference for dynamic Bayesian models[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,2001,63(1):127-146.
[13]、C31. Monte Carlo for tails[J].Journal of Statistical Computation and Simulation
[14]、Axel Gandy,Georg Hahn.QuickMMCTest: quick multiple Monte Carlo testing[J].Statistics and Computing,2017,27(3):823-832.
[15]、Gopi Goswami,Jun S. Liu.On learning strategies for evolutionary Monte Carlo[J].Statistics and Computing,2007,17(1):23-38.
[16]、Ehler,Martin,Gräf,Manuel,Oates,Chris. J..Optimal Monte Carlo integration on closed manifolds[J].Statistics and Computing,2019,29(6):1203-1214.
[17]、Yuguo Chen,Junyi Xie, Jun S. Liu.Stopping-time resampling for sequential Monte Carlo methods[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,2005,67(2):199-217.
[18]、Radivojević, Tijana,Akhmatskaya, Elena.Modified Hamiltonian Monte Carlo for Bayesian inference[J].Statistics and Computing,2020,30(2):377-404.
[19]、F. Cérou,P. Del Moral,T. Furon,A. Guyader.Sequential Monte Carlo for rare event estimation[J].Statistics and Computing,2012,22(3):795-808.
[20]、Yongtao Guan,Roland Fleißner,Paul Joyce,Stephen M. Krone.Markov Chain Monte Carlo in small worlds[J].Statistics and Computing,2006,16(2):193-202.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号