Finite mixture models with concomitant information: assessing diagnostic criteria for diabetes |
| |
Authors: | T. J. Thompson,P. J. Smith,& J. P. Boyle |
| |
Affiliation: | Centers for Disease Control and Prevention, Atlanta, USA |
| |
Abstract: | The World Health Organization (WHO) diagnostic criteria for diabetes mellitus were determined in part by evidence that in some populations the plasma glucose level 2 h after an oral glucose load is a mixture of two distinct distributions. We present a finite mixture model that allows the two component densities to be generalized linear models and the mixture probability to be a logistic regression model. The model allows us to estimate the prevalence of diabetes and sensitivity and specificity of the diagnostic criteria as a function of covariates and to estimate them in the absence of an external standard. Sensitivity is the probability that a test indicates disease conditionally on disease being present. Specificity is the probability that a test indicates no disease conditionally on no disease being present. We obtained maximum likelihood estimates via the EM algorithm and derived the standard errors from the information matrix and by the bootstrap. In the application to data from the diabetes in Egypt project a two-component mixture model fits well and the two components are interpreted as normal and diabetes. The means and variances are similar to results found in other populations. The minimum misclassification cutpoints decrease with age, are lower in urban areas and are higher in rural areas than the 200 mg dl-1 cutpoint recommended by the WHO. These differences are modest and our results generally support the WHO criterion. Our methods allow the direct inclusion of concomitant data whereas past analyses were based on partitioning the data. |
| |
Keywords: | Diabetes mellitus EM algorithm Finite mixture Generalized linear model Sensitivity Specificity |
|