首页 | 本学科首页   官方微博 | 高级检索  
     


On periodic autoregressive stochastic volatility models: structure and estimation
Authors:Nadia Boussaha
Affiliation:RECITS Laboratory, Faculty of Mathematics, USTHB, Algiers, Algeria
Abstract:To capture both the volatility evolution and the periodicity feature in the autocorrelation structure exhibited by many nonlinear time series, a Periodic AutoRegressive Stochastic Volatility (PAR-SV ) model is proposed. Some probabilistic properties, namely the strict and second-order periodic stationarity, are provided. Furthermore, conditions for the existence of higher-order moments are established. The autocovariance structure of the squares and higher order powers of the PAR-SV process is studied. Its dynamic properties are shown to be consistent with financial time series empirical findings. Ways in which the model may be estimated are discussed. Finally, a simulation study of the performance of the proposed estimation methods is provided and the PAR-SV is applied to model the spot rates of the euro and US dollar both against the Algerian dinar. The empirical analysis shows that the proposed PAR-SV model can be considered as a viable alternative to the periodic generalized autoregressive conditionally heteroscedastic (PGARCH) model.
Keywords:Periodic stochastic volatility model  periodic GARCH model  periodic stationarity  higher order moments  particle filtering  periodic Kalman filter
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号