首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal Nonparametric Estimation of First‐price Auctions
Authors:Emmanuel Guerre  Isabelle Perrigne  Quang Vuong
Abstract:
This paper proposes a general approach and a computationally convenient estimation procedure for the structural analysis of auction data. Considering first‐price sealed‐bid auction models within the independent private value paradigm, we show that the underlying distribution of bidders' private values is identified from observed bids and the number of actual bidders without any parametric assumptions. Using the theory of minimax, we establish the best rate of uniform convergence at which the latent density of private values can be estimated nonparametrically from available data. We then propose a two‐step kernel‐based estimator that converges at the optimal rate.
Keywords:First‐price auctions  independent private value  nonparametric identification  two‐stage nonparametric estimation  kernel estimation  minimax theory.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号