首页 | 本学科首页   官方微博 | 高级检索  
     


Regularization and variable selection via the elastic net
Authors:Hui Zou   Trevor Hastie
Affiliation:Stanford University, USA
Abstract:
Summary.  We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect, where strongly correlated predictors tend to be in or out of the model together. The elastic net is particularly useful when the number of predictors ( p ) is much bigger than the number of observations ( n ). By contrast, the lasso is not a very satisfactory variable selection method in the p ≫ n case. An algorithm called LARS-EN is proposed for computing elastic net regularization paths efficiently, much like algorithm LARS does for the lasso.
Keywords:Grouping effect    LARS algorithm    Lasso    Penalization    p≫n problem    Variable selection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号