首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian deconvolution of oil well test data using Gaussian processes
Authors:J. Andrés Christen  Bruno Sansó  Mario Santana-Cibrian  Jorge X. Velasco-Hernández
Affiliation:1. Centro de Investigación en Matemáticas, Guanajuato, Mexico;2. Applied Mathematics and Statistics, University of California, Santa Cruz, CA, USA;3. Centro de Innovación Matemática, UNAM, Querétaro, Mexico
Abstract:
We use Bayesian methods to infer an unobserved function that is convolved with a known kernel. Our method is based on the assumption that the function of interest is a Gaussian process and, assuming a particular correlation structure, the resulting convolution is also a Gaussian process. This fact is used to obtain inferences regarding the unobserved process, effectively providing a deconvolution method. We apply the methodology to the problem of estimating the parameters of an oil reservoir from well-test pressure data. Here, the unknown process describes the structure of the well. Applications to data from Mexican oil wells show very accurate results.
Keywords:oil well test data  deconvolution  Bayesian inference  inverse problems  Gaussian processes  simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号