首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation for High‐Dimensional Linear Mixed‐Effects Models Using ℓ1‐Penalization
Authors:JÜRG SCHELLDORFER  PETER BÜHLMANN  SARA VAN DE GEER
Affiliation:Seminar für Statistik, ETH Zurich
Abstract:Abstract. We propose an ?1‐penalized estimation procedure for high‐dimensional linear mixed‐effects models. The models are useful whenever there is a grouping structure among high‐dimensional observations, that is, for clustered data. We prove a consistency and an oracle optimality result and we develop an algorithm with provable numerical convergence. Furthermore, we demonstrate the performance of the method on simulated and a real high‐dimensional data set.
Keywords:adaptive Lasso  coordinate gradient descent  coordinatewise optimization  Lasso  random‐effects model  variable selection  variance components
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号