Binary 2 × 2 games |
| |
Authors: | Peter C. Fishburn D. Marc Kilgour |
| |
Affiliation: | (1) AT&T Bell Laboratories, Murray Hill, 07974, NJ, U.S.A.;(2) Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada |
| |
Abstract: | The 2 × 2 game is the simplest interactive decision model that portrays concerned decision makers with genuine choices. There are two players, each of whom must choose one of two strategies, so that there are four possible outcomes. Binary 2 × 2 games are 2 × 2 games with no restrictions on the players' preference relations over the outcomes. They therefore generalize the strict ordinal 2 × 2 games and the ordinal 2 × 2 games, classes which have already been studied extensively. This paper enumerates the strategically distinct binary 2 × 2 games. It also identifies important subsets defined by the number of pure Nash equilibria and the occurrence of dominant strategies. |
| |
Keywords: | Noncooperative game theory 2 × 2 games nontransitive preferences Nash equilibria dominant strategy |
本文献已被 SpringerLink 等数据库收录! |
|