首页 | 本学科首页   官方微博 | 高级检索  
     


Extended scaled prediction variance optimality for modified central composite design
Authors:Jin H. Oh  Sung H. Park
Affiliation:1. Trend Analysis Division, Statistical Research Institute, Daejeon, Korea;2. Department of Statistics, Seoul National University, Seoul, Korea
Abstract:
Robust parameter designs (RPDs) enable the experimenter to discover how to modify the design of the product to minimize the effect due to variation from noise sources. The aim of this article is to show how this amount of work can be reduced under modified central composite design (MCCD). We propose a measure of extended scaled prediction variance (ESPV) for evaluation of RPDs on MCCD. Using these measures, we show that we can check the error or bias associated with estimating the model parameters and suggest the values of α recommended for MCCS under minimum ESPV.
Keywords:Design evaluation  Extended scaled prediction variance  Modified central composite design  Robust parameter designs
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号