首页 | 本学科首页   官方微博 | 高级检索  
     


Testing Hypotheses in the Functional Linear Model
Authors:Hervé   Cardot,Fré    ric Ferraty,ré   Mas,Pascal Sarda
Affiliation:UnitéBiométrie et Intelligence Artificielle, INRA Toulouse.; GRIMM, UniversitéToulouse Le Mirail.; CREST-INSEE et Laboratoire de Statistique et Probabilités, UniversitéPaul Sabatier.; Laboratoire de Statistique et Probabilités, UniversitéPaul Sabatier.
Abstract:
The functional linear model with scalar response is a regression model where the predictor is a random function defined on some compact set of R and the response is scalar. The response is modelled as Y =Ψ( X )+ ɛ , where Ψ is some linear continuous operator defined on the space of square integrable functions and valued in R . The random input X is independent from the noise ɛ . In this paper, we are interested in testing the null hypothesis of no effect, that is, the nullity of Ψ restricted to the Hilbert space generated by the random variable X . We introduce two test statistics based on the norm of the empirical cross-covariance operator of ( X , Y ). The first test statistic relies on a χ 2 approximation and we show the asymptotic normality of the second one under appropriate conditions on the covariance operator of X . The test procedures can be applied to check a given relationship between X and Y . The method is illustrated through a simulation study.
Keywords:asymptotic normality    functional linear model    Hilbert space valued random variables    splines    tests
正在获取引用信息,请稍候...
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号