首页 | 本学科首页   官方微博 | 高级检索  
     

随钻声波测井数据实时压缩算法
引用本文:李传伟慕德俊,李安宗姚根虎 . 随钻声波测井数据实时压缩算法[J]. 西南石油大学学报(社会科学版), 2013, 30(5): 81-84. DOI: 10.3863/j.issn.1000-2634.2008.05.017
作者姓名:李传伟慕德俊  李安宗姚根虎 
作者单位:1.西北工业大学自动化学院,陕西西安710072;2.中国石油集团测井有限公司,陕西西安710061
摘    要:针对随钻测井信号低传输速率特性,结合随钻声波测井时数据量大的实际,研究了波列数据实时在线压缩算法。在分析随钻声波测井信号特征的基础上,建立了基线和波形相结合的分段压缩

关 键 词:随钻声波测井   数据压缩   预测编码   小波变换   压缩比

A REAL-TIME DATA COMPRESSION ALGORITHM FOR ACOUSTIC WAVE LOGGING WHILE DRILLING
LI Chuan-wei MU De-jun LI An-zong YAO Gen-hu. A REAL-TIME DATA COMPRESSION ALGORITHM FOR ACOUSTIC WAVE LOGGING WHILE DRILLING[J]. Journal of Southwest Petroleum University(Social Sciences Edition), 2013, 30(5): 81-84. DOI: 10.3863/j.issn.1000-2634.2008.05.017
Authors:LI Chuan-wei MU De-jun LI An-zong YAO Gen-hu
Affiliation:1.School of Automation,Northwestern Polytechnical University,Xi'an Shaanxi 710072,China;2.China Petroleum Logging Co.,Ltd.,Xi'an Shaanxi 710061,China
Abstract:Confined to the hostile environment of logging while drilling,the data transportation rate is very low,a real-time and on-line data compression algorithm is researched to compress the huge acoustic wave logging data.The subsection compression model had been proposed according to the characteristic of acoustic logging while drilling,the combination of prediction code and wavelet transform is put on the data compression.In this paper,the special predictor for the variation of base-line and the optimal and wavelet matching to the acoustic wave signal is put forward.The encode compression and lifting-scheme algorithms are applied to compress the base-line and wave data respectively to satisfy the real-time requirement of system.Experiment proves that the algorithm can compress the acoustic wave data efficiently with the characteristic reserved and white noise restrained and eliminated.
Keywords:acoustic logging while drilling   data compression   prediction code   wavelet transform   compression ratio
点击此处可从《西南石油大学学报(社会科学版)》浏览原始摘要信息
点击此处可从《西南石油大学学报(社会科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号