Influence diagnostics for Student-t censored linear regression models |
| |
Authors: | Monique B. Massuia Celso Rômulo Barbosa Cabral Larissa A. Matos |
| |
Affiliation: | 1. Departamento de Estatística, Universidade Estadual de Campinas, Campinas, Brazil;2. Departamento de Estatística, Universidade Federal do Amazonas, Manaus, Brazil |
| |
Abstract: | In this paper, we extend the censored linear regression model with normal errors to Student-t errors. A simple EM-type algorithm for iteratively computing maximum-likelihood estimates of the parameters is presented. To examine the performance of the proposed model, case-deletion and local influence techniques are developed to show its robust aspect against outlying and influential observations. This is done by the analysis of the sensitivity of the EM estimates under some usual perturbation schemes in the model or data and by inspecting some proposed diagnostic graphics. The efficacy of the method is verified through the analysis of simulated data sets and modelling a real data set first analysed under normal errors. The proposed algorithm and methods are implemented in the R package CensRegMod. |
| |
Keywords: | censored regression model EM algorithm case-deletion model local influence |
|
|