首页 | 本学科首页   官方微博 | 高级检索  
     


Penalized contrast estimation in functional linear models with circular data
Authors:E. Brunel  A. Roche
Affiliation:1. Institut de Mathématiques et de Modélisation de Montpellier I3M, UMR CNRS 5149, Montpellier 2 University, cc 051, place E. Bataillon, 34095 Montpellier cedex 5, Franceebrunel@math.univ-montp2.fr;3. Institut de Mathématiques et de Modélisation de Montpellier I3M, UMR CNRS 5149, Montpellier 2 University, cc 051, place E. Bataillon, 34095 Montpellier cedex 5, France
Abstract:
Our aim is to estimate the unknown slope function in the functional linear model when the response Y is real and the random function X is a second-order stationary and periodic process. We obtain our estimator by minimizing a standard (and very simple) mean-square contrast on linear finite dimensional spaces spanned by trigonometric bases. Our approach provides a penalization procedure which allows to automatically select the adequate dimension, in a non-asymptotic point of view. In fact, we can show that our penalized estimator reaches the optimal (minimax) rate of convergence in the sense of the prediction error. We complete the theoretical results by a simulation study and a real example that illustrates how the procedure works in practice.
Keywords:functional linear model  penalized contrast estimator  mean squared prediction error  minimax rate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号