首页 | 本学科首页   官方微博 | 高级检索  
     


A survey on multivariate chi-square distributions and their applications in testing multiple hypotheses
Authors:Thorsten Dickhaus  Thomas Royen
Affiliation:1. Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germanythorsten.dickhaus@wias-berlin.de;3. Department Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen am Rhein, Germany
Abstract:
We are concerned with three different types of multivariate chi-square distributions. Their members play important roles as limiting distributions of vectors of test statistics in several applications of multiple hypotheses testing. We explain these applications and consider the computation of multiplicity-adjusted p-values under the respective global hypothesis. By means of numerical examples, we demonstrate how much gain in level exhaustion or, equivalently, power can be achieved with corresponding multivariate multiple tests compared with approaches which are only based on univariate marginal distributions and do not take the dependence structure among the test statistics into account. As a further contribution of independent value, we provide an overview of essentially all analytic formulas for computing multivariate chi-square probabilities of the considered types which are available up to present. These formulas were scattered in the previous literature and are presented here in a unified manner.
Keywords:contingency tables  Kruskal–Wallis test  multiple Wald tests  multivariate analysis  multivariate gamma distributions  statistical genetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号