首页 | 本学科首页   官方微博 | 高级检索  
     


Local influence diagnostics for incomplete overdispersed longitudinal counts
Authors:Trias Wahyuni Rakhmawati  Geert Verbeke  Christel Faes
Affiliation:1. I-BioStat, Universiteit Hasselt, Diepenbeek, Belgium;2. I-BioSat, KU Leuven, Leuven, Belgium
Abstract:
We develop local influence diagnostics to detect influential subjects when generalized linear mixed models are fitted to incomplete longitudinal overdispersed count data. The focus is on the influence stemming from the dropout model specification. In particular, the effect of small perturbations around an MAR specification are examined. The method is applied to data from a longitudinal clinical trial in epileptic patients. The effect on models allowing for overdispersion is contrasted with that on models that do not.
Keywords:Combined model  missing data  Poisson–Gamma–Normal model  Poisson–Normal model  sensitivity analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号