首页 | 本学科首页   官方微博 | 高级检索  
     


A robust multivariate measurement error model with skew-normal/independent distributions and Bayesian MCMC implementation
Authors:V.H. Lachos   V. Garibay   F.V. Labra  R. Aoki
Affiliation:aDepartamento de Matemática Aplicada e Estatística, ICMC-USP, São Carlos, Brazil;bDepartamento de Estatística, IMECC, Universidade Estadual de Campinas, Campinas, Brazil
Abstract:Skew-normal/independent distributions are a class of asymmetric thick-tailed distributions that include the skew-normal distribution as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in multivariate measurement errors models. We propose the use of skew-normal/independent distributions to model the unobserved value of the covariates (latent variable) and symmetric normal/independent distributions for the random errors term, providing an appealing robust alternative to the usual symmetric process in multivariate measurement errors models. Among the distributions that belong to this class of distributions, we examine univariate and multivariate versions of the skew-normal, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
Keywords:Gibbs sampling   Metropolis–  Hastings   Skew-normal/independent distributions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号