首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian variable selection for multioutcome models through shared shrinkage
Authors:Debamita Kundu  Riten Mitra  Jeremy T. Gaskins
Abstract:
Variable selection over a potentially large set of covariates in a linear model is quite popular. In the Bayesian context, common prior choices can lead to a posterior expectation of the regression coefficients that is a sparse (or nearly sparse) vector with a few nonzero components, those covariates that are most important. This article extends the “global‐local” shrinkage idea to a scenario where one wishes to model multiple response variables simultaneously. Here, we have developed a variable selection method for a K‐outcome model (multivariate regression) that identifies the most important covariates across all outcomes. The prior for all regression coefficients is a mean zero normal with coefficient‐specific variance term that consists of a predictor‐specific factor (shared local shrinkage parameter) and a model‐specific factor (global shrinkage term) that differs in each model. The performance of our modeling approach is evaluated through simulation studies and a data example.
Keywords:global‐local shrinkage prior  multioutcome model  multivariate regression  shrinkage  variable selection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号