Abstract: | {Xn, n≥1} are independent and identically distributed random variables with continuous distribution function F(x). For j=1,…,n, Xj is called a near-record up to time n if Xj ∈ (Mna, Mn], where Mn = max1≤j≤n {Xj} and a is a positive constant. Let Zn(a) denote the number of near-records after, and including the maximum observation of the sequence. In this paper, the distributional results of Zn(a) are considered and its asymptotic behaviours are studied. |