首页 | 本学科首页   官方微博 | 高级检索  
     


Likelihood-based cross-validation score for selecting the smoothing parameter in maximum penalized likelihood estimation
Authors:Wataru Sakamoto  Shingo Shirahata
Affiliation:Department of Informatics and Mathematical Science , Graduate School of Engineering Science , Toyonaka , Osaka , 560-8531 , Japan
Abstract:Maximum penalized likelihood estimation is applied in non(semi)-para-metric regression problems, and enables us exploratory identification and diagnostics of nonlinear regression relationships. The smoothing parameter A controls trade-off between the smoothness and the goodness-of-fit of a function. The method of cross-validation is used for selecting A, but the generalized cross-validation, which is based on the squared error criterion, shows bad be¬havior in non-normal distribution and can not often select reasonable A. The purpose of this study is to propose a method which gives more suitable A and to evaluate the performance of it.

A method of simple calculation for the delete-one estimates in the likeli¬hood-based cross-validation (LCV) score is described. A score of similar form to the Akaike information criterion (AIC) is also derived. The proposed scores are compared with the ones of standard procedures by using data sets in liter¬atures. Simulations are performed to compare the patterns of selecting A and overall goodness-of-fit and to evaluate the effects of some factors. The LCV-scores by the simple calculation provide good approximation to the exact one if λ is not extremeiy smaii Furthermore the LCV scores by the simple size it possible to select X adaptively They have the effect, of reducing the bias of estimates and provide better performance in the sense of overall goodness-of fit. These scores are useful especially in the case of small sample size and in the case of binary logistic regression.
Keywords:Akaike information criterion  logistic regression  nonparametric generalized linear models  Poisson regression  smoothing spline
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号