首页 | 本学科首页   官方微博 | 高级检索  
     


A plug-in technique in nonparametric regression with dependence
Authors:Alejandro Quintela del Río
Affiliation:Facultad de Informática , Universidad de La Coru?a , Campus de Elvi?a, s/n, La Coru?a, SPAIN
Abstract:The problem addressed is that of smoothing parameter selection in kernel nonparametric regression in the fixed design regression model with dependent noise. An asymptotic expression of the optimum bandwidth parameter has been obtained in recent studies, where this takes the form h = C 0 n ?1/5. This paper proposes to use a plug-in methodology, in order to obtain an optimum estimation of the bandwidth parameter, through preliminary estimation of the unknown value of C 0.
Keywords:nonparametric regression  kernel estimate  bandwidth selection  plug-in  strongly mixing processes  cross-validation  asymptotic normality  time series
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号