Improved estimators of a location vector with unknown scale parameter |
| |
Authors: | Gina Bravo MacGibbon Brenda |
| |
Affiliation: | 1. Centre de recherche H?pital d’Youvilleet d’informatique , 1036 rue Bélvèdere, Sherbrooke, J1H 4C4, Canada;2. Dèpartement de mathèmatiques et d’informatique , Universitè du Quèbec à Montreal , Montrèal, H3C 3P8, Canada |
| |
Abstract: | The problem of estimating, under arbitrary quadratic loss, the location vector parameter θ of a p-variate distribution (p ≥ 3) with unknown covari-ance matrix ∑ = α2 D (where D is a known diagonal matrix) is considered. A large class of improved shrinkage estimators is developed for this problem. This work generalizes results of Berger and Brandwein and Strawderman for the case of a known scale parameter and extends the authors’ results for the class of scale mixtures of normal distributions. |
| |
Keywords: | location parameters improved estimation James-Stein estimators |
|
|