首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian shrinkage estimates for regression coefficients in m populations
Authors:T.W.F. Stroud
Affiliation:Department of Mathematics and Statistics , Queen's University , Kingston, Ontario, Canada
Abstract:
For a linear regression model over m populations with separate regression coefficients but a common error variance, a Bayesian model is employed to obtain regression coefficient estimates which are shrunk toward an overall value. The formulation uses Normal priors on the coefficients and diffuse priors on the grand mean vectors, the error variance, and the between-to-error variance ratios. The posterior density of the parameters which were given diffuse priors is obtained. From this the posterior means and variances of regression coefficients and the predictive mean and variance of a future observation are obtained directly by numerical integration in the balanced case, and with the aid of series expansions in the approximately balanced case. An example is presented and worked out for the case of one predictor variable. The method is an extension of Box & Tiao's Bayesian estimation of means in the balanced one-way random effects model.
Keywords:separate regressions  hierarchical bayesian inference  shrinkage of estimates  matrix series expansions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号