首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of a single outlier on arma identification
Authors:Stuart J. Deutsch  Jeery E. Richards  James J. Swain
Affiliation:1. School of Industrial and Systems Engineering , Georgia Institute of Technology , Atlanta, GA, 30332-0205;2. Industrial Engineering , North Carolina State University , Raleigh, NC, 27695
Abstract:Fox (1972), Box and Tiao (1975), and Abraham and Box (1979) have proposed methods for detecting outliers in time series whose ARMA form is known (or identified). We show that the existence of a single aberrant observation, innovation, or intervention causes an ARMA model to be misidentified using unadjusted autocorrelation (acf) and partial autocorrelation estimates. The magnitude, location, type of outlier, and in some cases the ARMA's parameters, affect the identification outcome. We use variance inflation, signal-to-noise ratios, and acf critical values to determine an ARMA model's susceptibility to misidentifi-cation. Numerical and simulation examples suggest how to iteratively use the outlier detection methods in practice.
Keywords:Time series identification  Autocorrelatiion function  Aberrant observation  Aberrant innovation  Intervention analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号