首页 | 本学科首页   官方微博 | 高级检索  
     


Making robust the cross-validatory choice of smoothing parameter in spline smoothing regression
Authors:Tony Robinson  Rana Moyeed
Affiliation:University of Bath , U.K.
Abstract:
Cross-validation as a means of choosing the smoothing parameter in spline regression has achieved a wide popularity. Its appeal comprises of an automatic method based on an attractive criterion and along with many other methods it has been shown to minimize predictive mean square error asymptotically. However, in practice there may be a substantial proportion of applications where a cross-validation style choice may lead to drastic undersmoothing often as far as interpolation. Furthermore, because the criterion is so appealing the user may be misled by an inappropriate, automatically-chosen value. In this paper we investigate the nature of cross-validatory methods in spline smoothing regression and suggest variants which provide small sample protection against undersmoothing.
Keywords:Spline Smoothing  Cross Validation  Robustness
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号