首页 | 本学科首页   官方微博 | 高级检索  
     


Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum
Authors:G. P. Nason,R. von Sachs,&   G. Kroisandt
Affiliation:University of Bristol, UK,;UniversitéCatholique de Louvain, Belgium,;Universität Kaiserslautern, Germany
Abstract:This paper defines and studies a new class of non-stationary random processes constructed from discrete non-decimated wavelets which generalizes the Cramér (Fourier) representation of stationary time series. We define an evolutionary wavelet spectrum (EWS) which quantifies how process power varies locally over time and scale. We show how the EWS may be rigorously estimated by a smoothed wavelet periodogram and how both these quantities may be inverted to provide an estimable time-localized autocovariance. We illustrate our theory with a pedagogical example based on discrete non-decimated Haar wavelets and also a real medical time series example.
Keywords:Local stationarity    Non-linear wavelet shrinkage    Non-stationary time series    Wavelet periodogram    Wavelet processes    Wavelet spectrum
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号