首页 | 本学科首页   官方微博 | 高级检索  
     


Standard errors for EM estimation
Authors:M. Jamshidian,&   R. I. Jennrich
Affiliation:University of Central Florida, Orlando, USA,;University of California at Los Angeles, USA
Abstract:The EM algorithm is a popular method for computing maximum likelihood estimates. One of its drawbacks is that it does not produce standard errors as a by-product. We consider obtaining standard errors by numerical differentiation. Two approaches are considered. The first differentiates the Fisher score vector to yield the Hessian of the log-likelihood. The second differentiates the EM operator and uses an identity that relates its derivative to the Hessian of the log-likelihood. The well-known SEM algorithm uses the second approach. We consider three additional algorithms: one that uses the first approach and two that use the second. We evaluate the complexity and precision of these three and the SEM in algorithm seven examples. The first is a single-parameter example used to give insight. The others are three examples in each of two areas of EM application: Poisson mixture models and the estimation of covariance from incomplete data. The examples show that there are algorithms that are much simpler and more accurate than the SEM algorithm. Hopefully their simplicity will increase the availability of standard error estimates in EM applications. It is shown that, as previously conjectured, a symmetry diagnostic can accurately estimate errors arising from numerical differentiation. Some issues related to the speed of the EM algorithm and algorithms that differentiate the EM operator are identified.
Keywords:Asymptotic variance–covariance matrix    EM algorithm    Numerical differentiation    Observed information    Precision    SEM algorithm    Slow convergence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号