首页 | 本学科首页   官方微博 | 高级检索  
     


A tutorial on support vector regression
Authors:Alex J. Smola  Bernhard Schölkopf
Affiliation:(1) RSISE, Australian National University, Canberra, 0200, Australia;(2) Max-Planck-Institut für biologische Kybernetik, 72076 Tübingen, Germany
Abstract:
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
Keywords:machine learning  support vector machines  regression estimation
本文献已被 SpringerLink 等数据库收录!
正在获取引用信息,请稍候...
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号