首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic survival models with spatial frailty
Authors:Leonardo Soares Bastos  Dani Gamerman
Affiliation:(1) Departamento de Estatística, Universidade Federal do Paraná, Caixa Postal: 19081, CEP: 81531-990 Curitiba, PR, Brazil;(2) Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Abstract:In many survival studies, covariates effects are time-varying and there is presence of spatial effects. Dynamic models can be used to cope with the variations of the effects and spatial components are introduced to handle spatial variation. This paper proposes a methodology to simultaneously introduce these components into the model. A number of specifications for the spatial components are considered. Estimation is performed via a Bayesian approach through Markov chain Monte Carlo methods. Models are compared to assess relevance of their components. Analysis of a real data set is performed, showing the relevance of both time-varying covariate effects and spatial components. Extensions to the methodology are proposed along with concluding remarks.
Keywords:Duration times  Correlation function  Dynamic models  Bayesian  Gaussian random fields  MCMC  Municipalities
本文献已被 PubMed SpringerLink 等数据库收录!
相似文献(共20条):
[1]、Gamma frailty models for bivariate survival data[J].Journal of Statistical Computation and Simulation
[2]、Analysis of spatial frailty models by a weighted estimating equation[J].Journal of statistical planning and inference
[3]、Yuanye Zhang,Ming-Hui Chen,Joseph G. Ibrahim,Donglin Zeng,Qingxia Chen,Zhiying Pan,Xiaodong Xue.Bayesian gamma frailty models for survival data with semi-competing risks and treatment switching[J].Lifetime data analysis,2014,20(1):76-105.
[4]、Chrys Caroni,Martin Crowder,Alan Kimber.Proportional hazards models with discrete frailty[J].Lifetime data analysis,2010,16(3):374-384.
[5]、Zhongwen Zhang,Lixin Song,Muhammad Amin.Estimation of multivariate frailty models with varying coefficients[J].统计学通讯:理论与方法,2019,48(3):450-461.
[6]、Negative dependence in frailty models[J].Journal of statistical planning and inference
[7]、Stochastic comparisons of multivariate frailty models[J].Journal of statistical planning and inference
[8]、Cancho,Vicente G.,Macera,Márcia A. C.,Suzuki,Adriano K.,Louzada,Francisco,Zavaleta,Katherine E. C..A new long-term survival model with dispersion induced by discrete frailty[J].Lifetime data analysis,2020,26(2):221-244.
[9]、Mitra, Rahimzadeh,Farzad, Eskandari.Non-mixture cure correlated frailty models in Bayesian approach[J].Journal of applied statistics,2011,38(8):1651-1663.
[10]、Christian Bressen Pipper, Torben Martinussen.An estimating equation for parametric shared frailty models with marginal additive hazards[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,2004,66(1):207-220.
[11]、P., Economou.Fitting parametric frailty and mixture models under biased sampling[J].Journal of applied statistics,2009,36(1):53-66.
[12]、Han, Lin Shang.Dynamic linear models with R[J].Journal of applied statistics,2011,38(10):2369-2370.
[13]、Joanna H. Shih,Thomas A. Louis.Assessing gamma frailty models for clustered failure time data[J].Lifetime data analysis,1995,1(2):205-220.
[14]、Estelle Kuhn,Charles El-Nouty.On a convergent stochastic estimation algorithm for frailty models[J].Statistics and Computing,2013,23(3):413-423.
[15]、Xiaonan Xue,Ron Brookmeyer.Bivariate frailty model for the analysis of multivariate survival time[J].Lifetime data analysis,1996,2(3):277-289.
[16]、R. Henderson,& P. Oman.Effect of frailty on marginal regression estimates in survival analysis[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,1999,61(2):367-379.
[17]、Haiming Zhou,Timothy Hanson,Jiajia Zhang.Generalized accelerated failure time spatial frailty model for arbitrarily censored data[J].Lifetime data analysis,2017,23(3):495-515.
[18]、Wang,Jing.Weighted estimation for multivariate shared frailty models for complex surveys[J].Lifetime data analysis,2019,25(3):469-479.
[19]、Continuous covariate frailty models for censored and truncated clustered data[J].Journal of statistical planning and inference
[20]、Xiaozhi Peng,Hecheng Wu.A study on geographically weighted spatial autoregression models with spatial autoregressive disturbances[J].统计学通讯:理论与方法,2020,49(21):5235-5251.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号