摘 要: | 本文基于再生核希尔伯特空间中的再生核,将核技巧与高斯-赛责尔迭代算法相结合,提出了具有核化函数的部分线性模型(PLMKF)及其算法收敛性条件等相关内容,具体包括:(1)基于OLS的PLMKF;(2)基于岭估计的PLMKF;(3)基于GLS的PLMKF;(4)基于多核学习的PLMKF。它们构成了PLMKF家族,具有一定的相互转化关系。在数值模拟中,本文验证了各个算法的有效性,比较了基于OLS与GLS、单核与多核的PLMKF模拟结果。实际应用中,在大幅外推情景下,PLMKF仍保持了良好的泛化能力,预测精度高于PLM、GAM和SVR。
|