首页 | 本学科首页   官方微博 | 高级检索  
     

一种混合建模方法及其在ETF期权定价中的应用
引用本文:杨昌辉,邵臻,刘辰,付超. 一种混合建模方法及其在ETF期权定价中的应用[J]. 中国管理科学, 2020, 28(12): 44-53. DOI: 10.16381/j.cnki.issn1003-207x.2020.12.005
作者姓名:杨昌辉  邵臻  刘辰  付超
作者单位:1. 合肥工业大学管理学院, 安徽 合肥 230009;2. 过程优化与智能决策教育部重点实验室, 安徽 合肥 230009;3. 智能决策与信息系统技术教育部工程研究中心, 安徽 合肥 230009
基金项目:国家自然科学基金资助项目(71771076,72071058,71601063,71690235)
摘    要:科学合理的交易型开放式指数基金(ETF)期权定价有利于充分发挥其风险对冲功能,也是一个需要准确掌握市场规律并兼顾经济学意义的复杂建模过程。本文提出了一种新的混合建模方法,将嵌套长短时记忆神经网络模型(NLSTM)与Heston模型结合,实现ETF期权定价偏差的动态修正,并基于华夏上证50ETF、嘉实沪深300ETF和华泰柏瑞沪深300ETF的高频期权数据,实验验证了所提方法的有效性。研究结果表明,不同类型ETF期权价格的波动特征差异显著,无论是基于BS定价模型还是Heston定价模型都难以准确刻画ETF期权价格的复杂变化规律。通过将NLSTM神经网络模型与Heston模型结合,能够有效地捕捉不同类型ETF期权的动态变化规律,从而提升ETF期权定价的准确性。

关 键 词:期权定价  ETF期权  深度神经网络  金融风险
收稿时间:2020-08-08
修稿时间:2020-09-13

A Hybrid Modeling Framework and Its Application for Exchange Traded Fund Options Pricing
YANG Chang-hui,SHAO Zhen,LIU Chen,FU Chao. A Hybrid Modeling Framework and Its Application for Exchange Traded Fund Options Pricing[J]. Chinese Journal of Management Science, 2020, 28(12): 44-53. DOI: 10.16381/j.cnki.issn1003-207x.2020.12.005
Authors:YANG Chang-hui  SHAO Zhen  LIU Chen  FU Chao
Affiliation:1. School of Management, Hefei University of Technology, Hefei 230009, China;2. Key Laboratory of Process Optimization and Intelligent Decision-making(Hefei University of Technology), Ministry of Education, Hefei 230009, China;3. Ministry of Education Engineering Research Center for Intelligent Decision-Making & Information System Technologies, Hefei 230009, China
Abstract:The scientific and reasonable exchange traded fund (ETF) options price contributes to implementing risk hedging function. This complex modeling process needs to consider the economic significance and accurately grasp the market rules. The issue of pricing ETF options is studied and a hybrid ETF options model is proposed. It combines the Nested-LSTM neural network model and the Heston model for the modeling, and dynamically corrects the option pricing deviation. The high-frequency data of ChinaAMC China 50 ETF, Harvest SZSE SME-CHINEXT 300 ETF and Huatai-PB CSI 300 ETF are taken as examples to verify the effectiveness of the proposed model. The experiment results show that the volatility characteristics of different types of ETF options prices are significantly different. Therefore, neither the Black-Scholes model nor the Heston model can be adapted to handle complex variation rules of ETF option prices accurately. By introducing Nested-LSTM neural network model into the Heston model, the proposed model can effectively capture the dynamic change rules of different types of ETF options, thus improving the estimation accuracy of ETF option prices effectively.
Keywords:option pricing  ETF options  deep neural network  financial risk  
点击此处可从《中国管理科学》浏览原始摘要信息
点击此处可从《中国管理科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号