首页 | 本学科首页   官方微博 | 高级检索  
     


Computational aspects of the EM algorithm for spatial econometric models with missing data
Authors:Thomas Suesse  Andrew Zammit-Mangion
Affiliation:1. National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong, Australiatsuesse@uow.edu.au;3. National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong, Australia
Abstract:Maximum likelihood (ML) estimation with spatial econometric models is a long-standing problem that finds application in several areas of economic importance. The problem is particularly challenging in the presence of missing data, since there is an implied dependence between all units, irrespective of whether they are observed or not. Out of the several approaches adopted for ML estimation in this context, that of LeSage and Pace [Models for spatially dependent missing data. J Real Estate Financ Econ. 2004;29(2):233–254] stands out as one of the most commonly used with spatial econometric models due to its ability to scale with the number of units. Here, we review their algorithm, and consider several similar alternatives that are also suitable for large datasets. We compare the methods through an extensive empirical study and conclude that, while the approximate approaches are suitable for large sampling ratios, for small sampling ratios the only reliable algorithms are those that yield exact ML or restricted ML estimates.
Keywords:EM algorithm  missing data  spatial autoregressive models  spatial-errors models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号