首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of the distribution function under hybrid ranked set sampling
Authors:Abdul Haq
Affiliation:1. Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistanaaabdulhaq@yahoo.com
Abstract:Recently, a hybrid ranked set sampling (HRSS) scheme has been proposed in the literature. The HRSS scheme encompasses several existing ranked set sampling (RSS) schemes, and it is a cost-effective alternative to the classical RSS and double RSS schemes. In this paper, we propose an improved estimator for estimating the cumulative distribution function (CDF) using HRSS. It is shown, both theoretically and numerically, that the CDF estimator under HRSS scheme is unbiased and its variance is always less than the variance of the CDF estimator with simple random sampling (SRS). An unbiased estimator of the variance of CDF estimator using HRSS is also derived. Using Monte Carlo simulations, we also study the performances of the proposed and existing CDF estimators under both perfect and imperfect rankings. It turns out that the proposed CDF estimator is by far a superior alternative to the existing CDF estimators with SRS, RSS and L-RSS schemes. For a practical application, a real data set is considered on the bilirubin level of babies in neonatal intensive care.
Keywords:Empirical distribution function  perfect and imperfect rankings  order statistics  ranked set sampling  relative precision  simple random sampling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号