首页 | 本学科首页   官方微博 | 高级检索  
     


Semi-parametric segmentation of multiple series using a DP-Lasso strategy
Authors:K. Bertin  X. Collilieux  E. Lebarbier
Affiliation:1. CIMFAV-Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile;2. IGN LAREG, Université Paris Diderot Sorbonne Paris Cité, Paris, France;3. AgroParisTech/INRA UMR518, Paris 5e, France
Abstract:
We consider a semi-parametric approach to perform the joint segmentation of multiple series sharing a common functional part. We propose an iterative procedure based on Dynamic Programming for the segmentation part and Lasso estimators for the functional part. Our Lasso procedure, based on the dictionary approach, allows us to both estimate smooth functions and functions with local irregularity, which permits more flexibility than previous proposed methods. This yields to a better estimation of the functional part and improvements in the segmentation. The performance of our method is assessed using simulated data and real data from agriculture and geodetic studies. Our estimation procedure results to be a reliable tool to detect changes and to obtain an interpretable estimation of the functional part of the model in terms of known functions.
Keywords:Semi-parametric estimation  multiple series  segmentation  Lasso  dynamic programming  geodetic data
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号