首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of the intercept parameter for linear regression model with uncertain non-sample prior information
Authors:Shahjahan Khan  Zahirul Hoque  A. K. Md. E Saleh
Affiliation:(1) Department of Maths and Computing, University of Soutern Queensland, 4350 Toowoomba, QLD, Australia;(2) School of Mathematics and Statistics, Carleton University, Ottawa, Canada;(3) Present address: Dept of Statistics, University of Chittagong, Bangladesh
Abstract:
This paper considers alternative estimators of the intercept parameter of the linear regression model with normal error when uncertain non-sample prior information about the value of the slope parameter is available. The maximum likelihood, restricted, preliminary test and shrinkage estimators are considered. Based on their quadratic biases and mean square errors the relative performances of the estimators are investigated. Both analytical and graphical comparisons are explored. None of the estimators is found to be uniformly dominating the others. However, if the non-sample prior information regarding the value of the slope is not too far from its true value, the shrinkage estimator of the intercept parameter dominates the rest of the estimators.
Keywords:Regression model  uncertain non-sample prior information  maximum likelihood, restricted, preliminary test and shrinkage estimators  bias, mean square error and relative efficiency
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号