首页 | 本学科首页   官方微博 | 高级检索  
     


Improved Monte Carlo inference for models with additive error
Authors:Martin Hazelton
Affiliation:(1) Department of Statistical Science, University College London, Gower Street, WC1E 6BT London, UK
Abstract:
Some statistical models defined in terms of a generating stochastic mechanism have intractable distribution theory, which renders parameter estimation difficult. However, a Monte Carlo estimate of the log-likelihood surface for such a model can be obtained via computation of nonparametric density estimates from simulated realizations of the model. Unfortunately, the bias inherent in density estimation can cause bias in the resulting log-likelihood estimate that alters the location of its maximizer. In this paper a methodology for radically reducing this bias is developed for models with an additive error component. An illustrative example involving a stochastic model of molecular fragmentation and measurement is given.
Keywords:Kernel density estimation  maximum likelihood estimation  molecular fragmentation  Monte Carlo estimation  stochastic modelling
本文献已被 SpringerLink 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号