首页 | 本学科首页   官方微博 | 高级检索  
     


A bias analysis of Weibull models under heaped data
Authors:Thomas Augustin  Joachim Wolff
Affiliation:(1) Institute for Population Research and Social Policy Research, University of Bielefeld, Box 10 01 31, D-33501, Germany;(2) Seminar of Applied Economic Research, Ludwig-Maximilians University of Munich, Ludwigstr. 28 RG, D-80539 Munich, Germany
Abstract:
Retrospectively collected duration data are often reported incorrectly. An important type of such an error is heaping—respondents tend to round-off or round-up the data according to some rule of thumb. For two special cases of the Weibull model we study the behaviour of the ‘naive estimators’, which simply ignore the measurement error due to heaping, and derive closed expressions for the asymptotic bias. These results give a formal justification of empirical evidence and simulation-based findings reported in the literature. Additionally, situations where a remarkable bias has to be expected can be identified, and an exact bias correction can be performed.
Keywords:Heaping  response variable error  measurement error modelling  socio-economic panel  survey design  duration models
本文献已被 SpringerLink 等数据库收录!
相似文献(共20条):
[1]、Clarke J,West M.Bayesian Weibull tree models for survival analysis of clinico-genomic data[J].Statistical Methodology,2008,5(3):238-262.
[2]、S., K., Upadhyay,Ashutosh, Gupta,Bhaswati, Mukherjee.A Bayes comparison of Weibull extension and modified Weibull models for data showing bathtub hazard rate[J].Journal of Statistical Computation and Simulation,2013,83(1):68-81.
[3]、Siu Keung Tse ,Chunyan Yang,Hak-Keung Yuen.Statistical analysis of Weibull distributed lifetime data under Type II progressive censoring with binomial removals[J].Journal of applied statistics,2000,27(8):1033-1043.
[4]、Statistical inference of for Weibull distribution under Type-II progressively hybrid censored data[J].Journal of Statistical Computation and Simulation
[5]、Md. Mazharul Islam,Tamanna Hawlader.Modified profile likelihood estimation for the Weibull regression models in survival analysis[J].统计学通讯:理论与方法,2019,48(9):2329-2343.
[6]、S. K. Ashour.Inference for Weibull distribution under adaptive Type-I progressive hybrid censored competing risks data[J].统计学通讯:理论与方法,2017,46(10):4756-4773.
[7]、Shahedul A. Khan.Exponentiated Weibull regression for time-to-event data[J].Lifetime data analysis,2018,24(2):328-354.
[8]、Carl Morris,Cindy Christiansen.Fitting Weibull duration models with random effects[J].Lifetime data analysis,1995,1(4):347-359.
[9]、Palash Ghosh,Anup Dewanji.Effect of reporting bias in the analysis of spontaneous reporting data[J].Pharmaceutical statistics,2015,14(1):20-25.
[10]、A test for abrupt change in hazard regression models with Weibull baselines[J].Journal of statistical planning and inference
[11]、Prediction intervals for future Weibull residual data[J].Journal of Statistical Computation and Simulation
[12]、M. Liu.Skew-normal factor analysis models with incomplete data[J].Journal of applied statistics,2015,42(4):789-805.
[13]、Kazumitsu Nawata ,Nobuko Nagase.Estimation of sample selection bias models[J].Econometric Reviews,1996,15(4):387-400.
[14]、Luis Hernando Vanegas,Gauss M. Cordeiro.Diagnostic tools in generalized Weibull linear regression models[J].Journal of Statistical Computation and Simulation,2013,83(12):2315-2338.
[15]、Kazumitsu Nawata,Nobuko Nagase.Estimation of sample selection bias models[J].Econometric Reviews,2013,32(4):387-400.
[16]、Chandan Saha, Michael P. Jones.Asymptotic bias in the linear mixed effects model under non-ignorable missing data mechanisms[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,2005,67(1):167-182.
[17]、LASSO and shrinkage estimation in Weibull censored regression models[J].Journal of statistical planning and inference
[18]、W. J., Krzanowski.Antedependence models in the analysis of multi-group high-dimensional data[J].Journal of applied statistics,1999,26(1):59-67.
[19]、Pao-Sheng, Shen.Semiparametric analysis of transformation models with doubly censored data[J].Journal of applied statistics,2011,38(4):675-682.
[20]、Jonathan Law,Darren J. Wilkinson.Composable models for online Bayesian analysis of streaming data[J].Statistics and Computing,2018,28(6):1119-1137.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号