首页 | 本学科首页   官方微博 | 高级检索  
     


Two-Group Classification Using Neural Networks*
Authors:Eddy Patuwo  Michael Y. Hu  Ming S. Hung
Abstract:Artificial neural networks are new methods for classification. We investigate two important issues in building neural network models; network architecture and size of training samples. Experiments were designed and carried out on two-group classification problems to find answers to these model building questions. The first experiment deals with selection of architecture and sample size for different classification problems. Results show that choice of architecture and choice of sample size depend on the objective: to maximize the classification rate of training samples, or to maximize the generalizability of neural networks. The second experiment compares neural network models with classical models such as linear discriminant analysis and quadratic discriminant analysis, and nonparametric methods such as k-nearest-neighbor and linear programming. Results show that neural networks are comparable to, if not better than, these other methods in terms of classification rates in the training samples but not in the test samples.
Keywords:Classification  Neural Networks  Simulation  and Statistical Techniques
相似文献(共20条):
[1]、Paul R. Yarnold,Robert C. Soltysik.Refining Two-Group Multivariable Classification Models Using Univariate Optimal Discriminant Analysis*[J].决策科学,1991,22(5):1158-1164.
[2]、Norman P. Archer,Shouhong Wang.Application of the Back Propagation Neural Network Algorithm with Monotonicity Constraints for Two-Group Classification Problems*[J].决策科学,1993,24(1):60-75.
[3]、Linda M. Salchenberger,E. Mine Cinar,Nicholas A. Lash.Neural Networks: A New Tool for Predicting Thrift Failures*[J].决策科学,1992,23(4):899-916.
[4]、邹鹏,叶强,李一军.面向巴塞尔新资本协议的自优化神经网络信用评估方法[J].管理学报,2005,2(4):406-409.
[5]、Paul A. Rubin.A Comparison of Linear Programming and Parametric Approaches to the Two-Group Discriminant Problem*[J].决策科学,1990,21(2):373-386.
[6]、Ting-Peng Liang,Herbert Moskowitz,Yuehwern Yih.Integrating Neural Networks and Semi-Markov Processes for Automated Knowledge Acquisition: An Application to Real-time Scheduling*[J].决策科学,1992,23(6):1297-1314.
[7]、Mary Jane Lenard,Pervaiz Alam,Gregory R. Madey.The Application of Neural Networks and a Qualitative Response Model to the Auditor\'s Going Concern Uncertainty Decision*[J].决策科学,1995,26(2):209-227.
[8]、林健,彭敏晶.基于神经网络集成的GDP预测模型[J].管理学报,2005,2(4):434-436,449.
[9]、Martin Hoegl,K. Praveen Parboteeah,Charles L. Munson.Team‐Level Antecedents of Individuals\' Knowledge Networks*[J].决策科学,2003,34(4):741-770.
[10]、尹鹏,王宗军,肖德云.基于变精度粗集神经网的企业失败风险预测研究[J].管理科学,2010,23(4).
[11]、梁樑,吴德胜,王志强,熊立,王国华.基于ANFIS和Elman网络的信用评价研究[J].管理工程学报,2005,19(1):69-73.
[12]、万映红,胡万平,曹小鹏.基于粗糙神经网络的客户消费分类模型研究[J].管理工程学报,2011,25(2).
[13]、黄亦潇,邵培基,李菁菁.基于BP神经网络的管理信息系统评价研究[J].中国管理科学,2003,11(Z1):351-354.
[14]、梁循,陈华,杨健,曾月卿.基于互联网股市信息量和神经网络的股价波动率预测[J].中国管理科学,2006,14(Z1).
[15]、Jaya Singhal.Two-Level Hierarchical Transportation Networks: A New Set of Problems and Practical Applications*[J].决策科学,1990,21(1):171-182.
[16]、Michael Doumpos,Stelios H. Zanakis,Constantin Zopounidis.Multicriteria Preference Disaggregation for Classification Problems with an Application to Global Investing Risk*[J].决策科学,2001,32(2):333-386.
[17]、Antonie Stam,Erich A. Joachimsthaler.Solving the Classification Problem in Discriminant Analysis Via Linear and Nonlinear Programming Methods*[J].决策科学,1989,20(2):285-293.
[18]、陈军.用哈希单元实现MPLS中分类规则表查询[J].管理科学文摘,2008(2):41-45.
[19]、李一军,叶强,李玥.基于BP神经网络的产品报价决策支持方法及其报价风险研究[J].管理工程学报,2003,17(4):33-36.
[20]、Moutaz Khouja,David E. Booth.A Decision Model for the Robot Selection Problem Using Robust Regression*[J].决策科学,1991,22(3):656-662.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号