首页 | 本学科首页   官方微博 | 高级检索  
     


Non-parametric estimation of the long-range dependence exponent for Gaussian processes
Authors:Gabriel Lang,Jean-Marc Azaï  s
Abstract:We consider a class of long-range-dependent Gaussian processes defined in a semiparametric framework. We propose a new estimator of the long-range dependence parameter, based on the integration of the periodogram in two windows. We show that it is asymptotically Gaussian and calculate the rate of convergence. We optimise parameters defining the window function for the minimum mean-square-error criterion. In a Monte-Carlo study, we compare the proposed estimator with previously studied estimators.
Keywords:Long-range dependence   Stationary Gaussian process   Periodogram   Monte-Carlo study   Minimum mean square error   Rescaled range
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号