首页 | 本学科首页   官方微博 | 高级检索  
     

时变空间权重矩阵面板数据模型稳健LM检验有效性研究
引用本文:欧变玲等. 时变空间权重矩阵面板数据模型稳健LM检验有效性研究[J]. 统计研究, 2015, 32(10): 98-105
作者姓名:欧变玲等
摘    要:
空间权重矩阵是描述个体间空间关系的重要工具,通常基于个体间的地理距离构造不随时间而改变的空间权重矩阵。然而,当个体间的空间关系源自经济/社会/贸易距离或人口流动性/气候等特征时,空间权重矩阵本质上可能将随时间而改变。由此,本研究提出时变空间权重矩阵面板数据模型的稳健LM检验。大量Monte Carlo模拟结果显示:从检验水平和功效角度来看,基于误设的非时变空间权重矩阵的稳健LM检验存在较大偏差,但是基于时变空间权重矩阵的稳健LM检验能够有效地识别面板数据中的空间关系类型。尤其是,在时间较长和个体较多等情况下,时变空间权重矩阵的稳健LM检验功效更高。

关 键 词:空间相关性  时变空间权重矩阵  稳健LM检验  面板数据模型  蒙特卡洛模拟  

Validity of Robust LM Tests in Panel Data Models with Time Varying Spatial Weights Matrices
Ou Bianling et al.. Validity of Robust LM Tests in Panel Data Models with Time Varying Spatial Weights Matrices[J]. Statistical Research, 2015, 32(10): 98-105
Authors:Ou Bianling et al.
Abstract:
As an important tool to represent spatial correlation among observations, time invariant spatial weights matrices are generally constructed using geographic distance between observations. However, when spatial correlation depends on economic/social/trade distance, migration and climate condition, spatial weights matrices will be substantially changed over time. This paper proposes robust LM tests in panel data models with time varying spatial weights matrices. Extensive Monte Carlo simulations indicate that in the view of size and power, robust LM tests with mis-specified time invariant spatial weights matrices cause large bias, and robust LM tests with time varying spatial weights matrices could effectively identify types of spatial correlation. The power of robust LM tests with time varying spatial weights matrices is much higher than that with mis-specified time invariant spatial weights matrices, especially for the large cross-sectional dimension and for the large time dimension.
Keywords:Spatial Dependence  Time Varying Spatial Weights Matrices  Robust LM Tests  Panel Data Models  Monte Carlo Simulations  
本文献已被 万方数据 等数据库收录!
点击此处可从《统计研究》浏览原始摘要信息
点击此处可从《统计研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号