首页 | 本学科首页   官方微博 | 高级检索  
     


Most mean powerful invariant test for testing two-dimensional parameter spaces
Affiliation:1. Departamento de Medicina y Cirugía Bucofacial, Facultad de Odontología, Universidad Complutense de Madrid, Madrid, Spain;2. Departamento de Odontología Conservadora, Facultad de Odontología, Universidad Complutense de Madrid, Madrid, Spain;1. Servicio de Endocrinología, Complejo Hospitalario Universitario de Pontevedra, Pontevedra, Spain;2. Servicio de Gastroenterología, Complejo Hospitalario Universitario de Pontevedra, Pontevedra, Spain;1. Unidad Coronaria, Àrea de Malalties del Cor, Hospital Universitario de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain;2. Unidad de Geriatría, Servicio de Medicina Interna, Hospital Universitario de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
Abstract:
This paper investigates the application of the most mean powerful invariant test to the problem of testing for joint MA(1)–MA(4) disturbances against joint AR(1)–AR(4) disturbances in the linear regression model. The most mean powerful invariant test was introduced by Begum and King (Most mean powerful invariant test of a composite null against a composite alternative. Comp. Statist. Data Analysis, 2004, forthcoming) and is based on the generalized Neyman–Pearson lemma which provides an optimal test of certain composite hypotheses. The most mean powerful invariant test can be computationally intensive. Previous applications have only involved testing problems whose null hypotheses, after reduction through invariance arguments, are one dimensional. This is the first application involving null and alternative hypotheses which are two dimensional. A Monte Carlo experiment was conducted to assess the small sample performance of the test with encouraging results. The increase in dimension does increase significantly the computational effort required to apply the test.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号