Prediction for generalized linear models |
| |
Authors: | David F. Percy |
| |
Affiliation: | Department of Mathematics and Computer Science , University of Salford |
| |
Abstract: | Regression models are often used to make predictions. All the information needed is contained in the predictive distribution. However, this cannot be evaluated explicitly for most generalized linear models. We construct two approximations to this distribution and demonstrate their use on two sets of survival data, corresponding to the outcome of patients admitted to intensive care units and the survival times of leukaemia patients.Regression models are often used to make predictions. All the information needed is contained in the predictive distribution. However, this cannot be evaluated explicitly for most generalized linear models. We construct two approximations to this distribution and demonstrate their use on two sets of survival data, corresponding to the outcome of patients admitted to intensive care units and the survival times of leukaemia patients.Regression models are often used to make predictions. All the information needed is contained in the predictive distribution. However, this cannot be evaluated explicitly for most generalized linear models. We construct two approximations to this distribution and demonstrate their use on two sets of survival data, corresponding to the outcome of patients admitted to intensive care units and the survival times of leukaemia patients.Regression models are often used to make predictions. All the information needed is contained in the predictive distribution. However, this cannot be evaluated explicitly for most generalized linear models. We construct two approximations to this distribution and demonstrate their use on two sets of survival data, corresponding to the outcome of patients admitted to intensive care units and the survival times of leukaemia patients. |
| |
Keywords: | |
|
|