This paper investigates bias in parameter estimates and residual diagnostics for parametric multinomial models by considering the effect of deleting a cell. In particular, it describes the average changes in the standardized residuals and maximum likelihood estimates resulting from conditioning on the given cells. These changes suggest how individual cell observations affect biases. Emphasis is placed on the role of individual cell observations in determining bias and on how bias affects standard diagnostic methods. Examples from genetics and log–linear models are considered. Numerical results show that conditioning on an influential cell results in substantial changes in biases.