首页 | 本学科首页   官方微博 | 高级检索  
     

考虑成分股联跳与宏观信息发布的沪深300指数已实现波动率模型研究
引用本文:瞿慧,程思逸. 考虑成分股联跳与宏观信息发布的沪深300指数已实现波动率模型研究[J]. 中国管理科学, 2016, 24(12): 10-19. DOI: 10.16381/j.cnki.issn1003-207x.2016.12.002
作者姓名:瞿慧  程思逸
作者单位:南京大学工程管理学院, 江苏 南京 210093
基金项目:国家自然科学基金资助项目(71201075,71671084);高等学校博士学科点专项科研基金资助项目(20120091120003)
摘    要:
利用日内高频数据计算的已实现波动率较好度量了金融资产的风险,因此对其预测模型的研究具有重要意义。考虑到指数成分股的联跳可能蕴含指数跳跃所未能反映的信息,提出运用非参数方法识别指数成分股的联跳,采用自回归条件风险模型估计成分股联跳强度,并将其引入指数的已实现波动率异质自回归(HAR-RV-CJ)模型中,分析模型预测性能的改进。进一步的,考虑到宏观信息公告的发布可能对股市产生整体性影响,相应影响成分股联跳的几率;因此,在成分股联跳的自回归条件风险模型中引入居民消费价格指数、国内生产总值、贸易差额等宏观信息公告变量,并分析对联跳强度估计以及指数已实现波动率预测的影响。采用2011年1月4日至2013年7月11日沪深300指数及其成分股高频数据的实证表明,指数成分股联跳与指数跳跃具有不同的特征;用成分股联跳强度代替HAR-RV-CJ模型中的跳跃构建的HAR-RV-CI模型,较原始的HAR-RV-CJ模型,以及同时考虑指数跳跃与成分股联跳强度的HAR-RV-CJI模型,具有明显较优的样本内拟合与样本外预测性能。引入宏观信息公告变量可以改进联跳强度自回归条件风险模型的拟合效果,并提高指数已实现波动率模型的样本内拟合能力,但对于指数已实现波动率的样本外预测性能并无明显的帮助。

关 键 词:联跳  宏观信息公告  波动率预测  异质自回归模型  自回归条件风险模型  SPA检验  
收稿时间:2015-07-29
修稿时间:2016-06-13

The Role of Cojumps and Macro Announcements in Forecasting the Realized Volatility of Chinese CSI 300 Index
QU Hui,CHENG Si-yi. The Role of Cojumps and Macro Announcements in Forecasting the Realized Volatility of Chinese CSI 300 Index[J]. Chinese Journal of Management Science, 2016, 24(12): 10-19. DOI: 10.16381/j.cnki.issn1003-207x.2016.12.002
Authors:QU Hui  CHENG Si-yi
Affiliation:School of Management and Engineering, Nanjing University, Nanjing 210093, China
Abstract:
The realized volatility calculated from intraday high-frequency data well measures the risk of financial assets. Therefore studying its forecasting models is of important value. The heterogeneous autoregressive (HAR-RV-CJ) model of realized volatility which uses lagged continuous-time volatilities and jumps as regressors well characterizes volatility's long memory property with competitive forecasting performance, and thus it has been widely adopted. Considering that the cojumps of component stocks can contain information that is not reflected in index jumps, expanding the HAR-RV-CJ model of index volatility with such cojump information is proposed. Specifically, cojumps are identified using the non-parametric mean cross-product statistic, cojump intensity is estimated using the autoregressive conditional hazard model, and then cojump intensity is included in the HAR-RV-CJ model of index realized volatility to analyze the corresponding forecasting performance improvements. Furthermore, considering that macro announcements can affect the whole stock market and thus the cojump probability, macro exogenous variables such as the consumer price index, the gross domestic product and the balance of trade announcements, etc., are included to augment the basic autoregressive conditional hazard model. Its value to cojump intensity estimation and index volatility forecasting is also considered. Using the high-frequency prices of Chinese CSI 300 index and its component stocks from January 1, 2011 to July 11, 2013 as empirical data, it is shown that component cojumps and index jumps do have different characteristics. Besides the fit performance of these HAR models, their out-of-sample forecasting performance is compared using the superior predictive ability test under four common loss functions. The HAR-RV-CI model which includes cojump intensity instead of past jumps as its regressors, has obviously better fit and forecasting performance than the original HAR-RV-CJ model, the HAR-RV-CJI model which includes both cojump intensity and past jumps, and the benchmark GARCH-jump model. Including macro announcements can improve the fit of the autoregressive conditional hazard model and the index volatility model. However, it does not help the out-of-sample forecasting of index volatility, partly due to the low frequency of the macro announcement variables. Above all, our research confirms the value of including component cojump information in the HAR-RV-CJ model of CSI 300 index volatility, and suggests the appropriate model form for superior forecasting performance. Direct extension would be including the cojump information in the vector HAR models to pursue forecasting performance improvements, which has great value for index futures hedging and portfolio allocation applications.
Keywords:cojump  macro announcements  volatility forecasting  heterogeneous autoregressive model  autoregressive conditional hazard model  superior predictive ability test  
点击此处可从《中国管理科学》浏览原始摘要信息
点击此处可从《中国管理科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号