首页 | 本学科首页   官方微博 | 高级检索  
     


Semiparametric Inference Methods for General Time Scale Models
Authors:Duchesne  Thierry  Lawless  Jerry
Affiliation:(1) Department of Statistics, University of Toronto, Toronto, ON, Canada, M5S 3G3;(2) Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
Abstract:In this paper we consider semiparametric inference methods for the time scale parameters in general time scale models (Oakes, 1995, Duchesne and Lawless, 2000). We use the results of Robins and Tsiatis (1992) and Lin and Ying (1995) to derive a rank-based estimator that is more efficient and robust than the traditional minimum coefficient of variation (min CV) estimator of Kordonsky and Gerstbakh (1993) for many underlying models. Moreover, our estimator can readily handle censored samples, which is not the case with the min CV method.
Keywords:accelerated failure time model  collapsible model  generalized residuals  ideal time scale  minimum coefficient of variation  linear rank estimator  separable scale model  unbiased estimating function
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号